Chapter 1, part 5

Primes
Gevery noh-zero integer a is divisible by $1,-1, a,-a$
Prime "Has no extra divisors"
Def $p \in \pi_{\mu}$ is a price if $p \neq 0, p \neq \pm 1$, and p has no divisors besides ± 1 and $\pm p$. If p is a prime, then so is $-p$ (because they trave same set of divisors). Primes cannot divide each other. If p and q are primes and $p l q$, then $p= \pm q$. Recall Thl.H If albe and $(a, b)=1$ then ale.
Jet p be a prime, ploce.
Cases:
plo (implies plbe because $b=p s$, thus $b c=p 5 c$)
pxb implies $(p, b)=1$
Thill. 5 Let p be an integer, $p \neq 0, p \neq \pm 1$.
Then p is a prime $\frac{i f f}{D}$ it has the follonsing property:
plebe implies ply or ple (or both)
Pf Let p be a prime. Assume that plebe, and pxb.

Then $(p, b)=1$, and, by Th|, $4, p \mid c$.
Converse ($\overline{6} \times 14$)
Comenterpositive: If p is not a prime then p does not satisfy the property. suffices to find b and e such that plebe but pe and pie. Let b / p and $\xlongequal{b \neq \pm 1}>b \neq \pm p$.
$p=b c \quad$ Wanted: $p \times b$ and pec $\mid p=b c$ means $p=b c .1$ $p \mid b c$
If plo then $b=p z$
$1=z c$ implies $|z| \cdot|c|=1$ implies $|z|=1$ and $|e|=1$.
Iuparticerlar $c= \pm 1$ implies $b= \pm p$. Thus $p \times b$.
If plo then $c=p y$

$$
p=b p y
$$

$1=b_{0} y$ implies $|b||y|=1$ implies $|b|=1$ and $|y|=1$
In particular $b= \pm 1$.

